10 research outputs found

    Maternal Exposure to Occupational Solvents and Childhood Leukemia

    Get PDF
    Many organic solvents are considered probable carcinogens. We carried out a population-based case–control study including 790 incident cases of childhood acute lymphoblastic leukemia and as many healthy controls, matched on age and sex. Maternal occupational exposure to solvents before and during pregnancy was estimated using the expert method, which involves chemists coding each individual’s job for specific contaminants. Home exposure to solvents was also evaluated. The frequency of exposure to specific agents or mixtures was generally low. Results were generally similar for the period ranging from 2 years before pregnancy up to birth and for the pregnancy period alone. For the former period, the odds ratio (OR), adjusted for maternal age and sex, for any exposure to all solvents together was 1.11 [95% confidence interval (CI), 0.88–1.40]. Increased risks were observed for specific exposures, such as to 1,1,1-trichloroethane (OR = 7.55; 95% CI, 0.92–61.97), toluene (OR = 1.88; 95% CI, 1.01–3.47), and mineral spirits (OR = 1.82; 95% CI, 1.05–3.14). There were stronger indications of moderately increased risks associated with exposure to alkanes (C5–C17; OR = 1.78; 95% CI, 1.11–2.86) and mononuclear aromatic hydrocarbons (OR = 1.64; 95% CI, 1.12–2.41). Risk did not increase with increasing exposure, except for alkanes, where a significant trend (p = 0.04) was observed. Home exposure was not associated with increased risk. Using an elaborate exposure coding method, this study shows that maternal exposure to solvents in the workplace does not seem to play a major role in childhood leukemia

    Listing Occupational Carcinogens

    Get PDF
    The occupational environment has been a most fruitful one for investigating the etiology of human cancer. Many recognized human carcinogens are occupational carcinogens. There is a large volume of epidemiologic and experimental data concerning cancer risks in different work environments. It is important to synthesize this information for both scientific and public health purposes. Various organizations and individuals have published lists of occupational carcinogens. However, such lists have been limited by unclear criteria for which recognized carcinogens should be considered occupational carcinogens, and by inconsistent and incomplete information on the occupations and industries in which the carcinogenic substances may be found and on their target sites of cancer. Based largely on the evaluations published by the International Agency for Research on Cancer, and augmented with additional information, the present article represents an attempt to summarize, in tabular form, current knowledge on occupational carcinogens, the occupations and industries in which they are found, and their target organs. We have considered 28 agents as definite occupational carcinogens, 27 agents as probable occupational carcinogens, and 113 agents as possible occupational carcinogens. These tables should be useful for regulatory or preventive purposes and for scientific purposes in research priority setting and in understanding carcinogenesis

    A hybrid expert approach for retrospective assessment of occupational exposures in a population-based case-control study of cancer

    No full text
    Abstract Background While the expert-based occupational exposure assessment approach has been considered the reference method for retrospective population-based studies, its implementation in large study samples has become prohibitive. To facilitate its application and improve upon it we developed, in the context of a Montreal population-based study of prostate cancer (PROtEuS), a hybrid approach combining job-exposure profiles (JEPs) summarizing expert evaluations from previous studies and expert review. We aim to describe the hybrid expert method and its impacts on the exposures assigned in PROtEuS compared to those from a previous study coded using the traditional expert method. Methods Applying the hybrid approach, experts evaluated semi-quantitative levels of confidence, concentration and frequency of exposure to 313 agents for 16,065 jobs held by 4005 subjects in PROtEuS. These assessments were compared to those from a different set of jobs coded in an earlier study of lung cancer, conducted on the same study base, for 90 blue-collar occupations and 203 agents. Endpoints evaluated included differences in the number of exposures and in the distribution of ratings across jobs, and the within-occupation variability in exposure. Results Compared to jobs from the lung cancer study, jobs in PROtEuS had on average 0.3 more exposures. PROtEuS exposures were more often assigned definite confidence ratings, but concentration and frequency levels tended to be lower. The within-occupation variability in ratings assigned to jobs were lower in PROtEuS jobs for all metrics. This was particularly evident for concentration, although considerable variability remained with over 40% of occupation/agent cells in PROtEuS exposed at different levels. The hybrid approach reduced coding time by half, compared to the traditional expert assessment. Conclusions The new hybrid expert approach improved on efficiency and transparency, and resulted in greater confidence in assessments, compared to the traditional expert method applied in an earlier study involving a similar set of jobs. Assigned ratings were more homogeneous with the hybrid approach, possibly reflecting clearer guidelines for coding, greater coherence between experts and/or reliance on summaries of past assessments. Nevertheless, significant within-occupation variability remained with the hybrid approach, suggesting that experts took into account job-specific factors in their assessments

    Assessing occupational exposure to chemicals in an international epidemiological study of brain tumours

    No full text
    The INTEROCC project is a multi-centre case–control study investigating the risk of developing brain cancer due to occupational chemical and electromagnetic field exposures. To estimate chemical exposures, the Finnish Job Exposure Matrix (FINJEM) was modified to improve its performance in the INTEROCC study and to address some of its limitations, resulting in the development of the INTEROCC JEM. An international team of occupational hygienists developed a crosswalk between the Finnish occupational codes used in FINJEM and the International Standard Classification of Occupations 1968 (ISCO68). For ISCO68 codes linked to multiple Finnish codes, weighted means of the exposure estimates were calculated. Similarly, multiple ISCO68 codes linked to a single Finnish code with evidence of heterogeneous exposure were refined. One of the key time periods in FINJEM (1960–1984) was split into two periods (1960–1974 and 1975–1984). Benzene exposure estimates in early periods were modified upwards. The internal consistency of hydrocarbon exposures and exposures to engine exhaust fumes was improved. Finally, exposure to polycyclic aromatic hydrocarbon and benzo(a)pyrene was modified to include the contribution from second-hand smoke. The crosswalk ensured that the FINJEM exposure estimates could be applied to the INTEROCC study subjects. The modifications generally resulted in an increased prevalence of exposure to chemical agents. This increased prevalence of exposure was not restricted to the lowest categories of cumulative exposure, but was seen across all levels for some agents. Although this work has produced a JEM with important improvements compared to FINJEM, further improvements are possible with the expansion of agents and additional external data

    A population-based case-control study of occupational exposure to acids and the risk of lung cancer:Evidence for specificity of association

    No full text
    International audienceOccupational exposure to strong inorganic acid mists containing sulfuric acid has been recognized as a carcinogen (Group 1) since 1992. An augmented, secondary data analysis of a population-based case-control study of lung cancer was conducted to assess lung cancer-specific risks using 772 lung cancer cases diagnosed between 1981 and 1985. Individually matched controls--on age, gender, and borough of residence--were identified. Lifetime exposure to 10 acidic agents, including strong inorganic acids and some gases, was assessed from complete lifetime occupational histories in terms of concentration, frequency, and reliability of the various exposure assessments. Smoking-adjusted odds ratios and 95% confidence intervals were determined for overall and histology-categorized lung cancers using conditional logistic regression. No excess risk for overall lung cancer was associated with any of the acids, and effect modification by gender could not be identified. The absence of an acid lung cancer effect reinforces more recent toxicological data that suggest specificity to the larynx
    corecore